
November 2016 FoxRockX Page 11

Working with dates and
times in SQL Server
SQL Server gives you plenty of power for working with dates, times and
datetimes.

Tamar E. Granor, Ph.D.

One of the things that makes VFP easy to
work with is the inclusion of date math
and a robust set of functions for taking
dates and datetimes apart and putting
them back together. SQL Server also
supports date math and has its own set
of functions for manipulating dates and
datetimes. In this article, I’ll look at the
date and time types SQL Server supports
and the language elements for working
with them. In my next article, I’ll show
how to solve common date and time
related problems in SQL Server.
Databases typically have lots of dates
and times in them. They represent birth-
dates, dates people were hired, invoice
dates, manufacture dates, appointment
times, arrival times, departure times, and
so much more. It’s not unusual to need
to do calculations based on those dates,
such as computing a renewal date so
many days after a given date or calculat-
ing hours worked based on arrival and
departure time. Taking dates apart to, for
example, extract just the year, or building
dates out of a day, month and year are
also common tasks.

As VFP developers, we’re used to being able to
use FoxPro’s built-in date math and functions like
GoMonth, YEAR(), DATE() and so on to perform
such tasks. While the way you perform some of
them is different in SQL Server, it, too, has a robust
date and datetime story.

Date Types
SQL Server supports multiple date and time related
data types; they’re shown in Table 1. The story was
considerably improved in SQL Server 2008, with
the addition of separate Date and Time types, as
well as a more precise DateTime type and a type
that tracks time zone offset along with the date and
time, so that it’s independent of location.

While I normally like to present examples
using the AdventureWorks example database, it
includes only three of the six data types, so at least
the examples in this article will use the temporary
table created by the code in Listing 1 (included in
this month’s downloads as CreateDTTest.SQL);
obviously, if you run this code yourself, you’ll have
different data in the first record. Note that, in this
case, SQL Server implicitly converts the value being
inserted into the right data type, so it doesn’t mat-
ter that the value inserted into all fields of the first
record is datetimeoffset and the values inserted
into the second record are strings.

Type Format Notes
Datetime YYYY-MM-DD

hh:mm:ss[.nnn]
Standard date and time
with precision up to
milliseconds

Datetime2 YYYY-MM-DD
hh:mm:ss[.
nnnnnnn]

Date and time with
precision to millionths of
a second, added in SQL
Server 2008

Smalldatetime YYYY-MM-DD
hh:mm:ss

Date and time with
precision to seconds

Date YYYY-MM-DD Date only, added in SQL
Server 2008

Time hh:mm:ss[.
nnnnnnn]

Time only with precision
to millionths of a second,
added in SQL Server 2008

Datetimeoffset YYYY-MM-DD
hh:mm:ss[.
nnnnnnn] [+|-]
hh:mm

Date and time with
precision to millionths of
a second and information
about timezone, added in
SQL Server 2008

Table 1. SQL Server supports date, datetime and time data types.

Page 12 FoxRockX November 2016

Listing 1. This code creates and populates a temporary table
that includes all six date and time types.
CREATE TABLE #dttesting (
 tDateTime datetime,
 tDateTime2 datetime2,
 tSmallDateTime smalldatetime,
 dDate date,
 tTime time,
 tDateTimeOffset datetimeoffset);

DECLARE @RightNow DateTimeOffset
 = SYSDATETIMEOFFSET();

INSERT INTO #dttesting VALUES
 (@RightNow, @RightNow, @RightNow,
 @RightNow, @RightNow, @RightNow),
 ('1958-09-28', '1958-09-28', '1958-09-28',
 '1958-09-28', '09:37:52', '1958-09-28');

In the rest of this article, I’ll use “date/time” to
mean “date, time or datetime.”

Getting the current date and time
VFP offers the DATE() and DATETIME() functions
to return the current date and datetime, respec-
tively. SQL Server has six functions that provide
the current datetime; they’re shown in Table 2.

Table 2. SQL Server offers a variety of ways to get the current
date and time.

Function Notes
CURRENT_
TIMESTAMP

ANSI SQL standard
way to retrieve the
current date and time.
Returns a datetime
value.

GETDATE() Retrieves the current
date and time.
Returns a datetime
value.

GETUTCDATE() Retrieves the current
date and time in UTC
(coordinated universal
time). Returns a
datetime value.

SYSDATETIME() Retrieves the current
date and time.
Returns a datetime2
value.

SYSUTCDATETIME() Retrieves the current
date and time in UTC
(coordinated universal
time). Returns a
datetime2 value.

SYSDATETIMEOFFSET Retrieves the
current date and
time with time zone
offset. Returns a
datetimeoffset value.

GetDate() is the SQL Server implementation of
the ANSI Standard CURRENT_TIMESTAMP. You
can use them interchangeably.

There are no functions to return just the cur-
rent date or just the current time. To get those, you
can use one of the current datetime functions and
then apply CAST() or CONVERT() to convert to the
desired type. Listing 2 shows two ways each of get-
ting the current date and the current time.

Listing 2. There are no built-in functions to provide the current
date or the current time individually. Instead, convert the current
datetime.
SELECT CAST(GetDate() as Date),
 CONVERT(date, GETDATE()),
 CAST(GetDate() AS time),
 CONVERT(time, GetDate())

Date Math
For the older datetime types (datetime and small-
datetime), SQL Server supports the same kind of
date math as VFP. You can add or subtract num-
bers to or from those to get new datetimes. So, for
example, the query in Listing 3 produces the results
shown in Figure 1.

Listing 3. You can do date math with datetime and smalldate-
time.
SELECT tDateTime + 1 AS tNextDay,
 tSmallDateTime - 1 AS tPriorDay
 FROM #dttesting

Note that even though the values are date-
times, adding an integer changes the value by days,
not seconds (as it would in VFP). You can add and
subtract fractional values and the new values differ
by the appropriate fraction of a day, so adding .5
to a datetime or smalldatetime value gives you the
datetime 12 hours later.

The newer datetime types don’t support direct
date math like this. When you attempt it, you get an
error like “Operand type clash: datetime2 is incom-
patible with numeric.”

The same restrictions apply to subtracting one
date or time value from another. The two older
types allow such subtraction, though the result is of
the same type and has to be converted with CAST()
to tell you the number of days between the two
dates. For example, the query in Listing 4 produces
the results in Figure 2.

Figure 1. You can add to and subtract from datetime
and smalldatetime values.

November 2016 FoxRockX Page 13

Listing 4. You can subtract a datetime from another, but the
result is a datetime. Use CAST() to turn it into a number.
SELECT GetDate() – tDateTime AS tDiff,
 CAST(GetDate() - tDateTime AS Int)
 AS nDays
 FROM #dttesting

Calculating with dates
If you can’t do date math with the newer date and
time types, how do you calculate the difference
between two dates, or the date 30 days from today?
With a pair of functions, DateDiff() and DateAdd().
DateAdd() is similar to VFP’s GoMonth() function,
but handles a much broader range of calculations.

Computing date and time differences
DateDiff() computes the difference between two
dates, times, or datetimes. You specify what units
(called dateparts) you want the difference in. The
syntax for DateDiff() is shown in Listing 5.

Listing 5. The DateDiff() function calculates the difference be-
tween two dates, times or datetimes, and returns the value as a
number of the specified datepart.
Result = DateDiff(DatePart, Start, End)

So to find the number of days between two
datetimes, you use code like Listing 6. The order
of the dates here is the reverse of that used when
subtracting. That is, the function subtracts the first
date provided (Start) from the second (End). If End
is earlier than Start, the result is negative.

Listing 6. To find the number of days between two dates, use
DateDiff() and pass day as the first parameter.
SELECT DateDiff(day, tDateTime2, GetDate())
 AS nDays
 FROM #dttesting

What’s really powerful about DateDiff(),
though, is that it can handle a wide range of date-
parts, not just days. Table 3 shows the options;
though the document shows lower case for all of
them, my tests indicate that upper case and mixed
case work as well. Note also that dateparts are used
by multiple functions; this table addresses all uses,
including some dateparts that aren’t supported by
DateDiff().

Datepart Alternative
notations Notes

year yy, yyyy Year. For DateDiff(), based on only the year portion of the dates, not
the number of days between the specified dates.

quarter qq, q Quarter. For DateDiff(), based on strict definition of quarters, not the
number of three month periods between the dates.

month mm, m Month of the year. For DateDiff() and DateAdd(), number of months.
For DateDiff(), based on only the year and month portion of the dates,
not the number of days.

dayofyear dy, y Day from the first of the year. For DateDiff() and DateAdd(), number of
days, same as day.

day dd, d Day of the month. For DateDiff() and DateAdd(), number of days,
same as dayofyear.

week wk, ww Week of the year, based on the SET DATEFIRST setting. For
DateDiff() and DateAdd(), number of weeks.

weekday dw, w Day of the week, based on the SET DATEFIRST setting. For DateDiff()
and DateAdd(), number of days, same as day.

hour hh Hours.

minute mi, n Minutes.

second ss, s Seconds.

millisecond ms Thousands of a second.

microsecond mcs Millionths of a second.

nanosecond ns Billionths of a second.

TZoffset tz Timezone offset (in minutes), applies only to datetime2 and
datetimeoffset types. Not supported for DateDiff() and DateAdd().

ISO_WEEK Isowk, isoww ISO standard 8601 week. Not supported for DateDiff() and DateAdd().

Table 3. SQL Server supports a wide variety of dateparts.

Figure 2. With CAST(), you can find out
how many days between two datetimes
or smalldatetimes.

Page 14 FoxRockX November 2016

DateDiff() returns an Int value. That means
that the maximum difference it supports between
the start and end values varies based on which
datepart you specify. Given other limitations on
the accuracy of datetime values, you’re unlikely to
run into this issue until you get down to seconds
or less. DateDiff() can handle differences of up to
68 years in seconds; for milliseconds, the limit is
less than 25 days; for nanoseconds, it’s a little more
than 2 seconds. (That makes sense when you real-
ize that the range of Int is from -2,147,483,648 to
+2,147,483,647.)

The table hints at an important point about
how DateDiff() works. The calculation goes down
only as far as the specified datepart. So, for exam-
ple, if you specify a start date of 12/31/2016 and
an end date of 1/1/2017, with a datepart of year,
DateDiff() gives you 1, but a start date of 1/1/2017
and an end date of 1/2/2017 gives you 0. That may
or may not be surprising, but consider the example
in Listing 7; the result is shown in Figure 3. Here,
we declare a start time and two end times. Each of
the end times differs from the start time by 90 min-
utes, but when we check the difference in hours,
we get 2 in the first case and -1 in the second. (Date-
Diff() returns a negative value when the End time
is earlier than the Start time.) That’s because Date-
Diff() doesn’t subtract the first date from the second
(in, say, nanoseconds) and then convert to hours.
Instead, it looks only at the parts larger than the
one you specify and the one you specify. Here, the
dates are the same, so they contribute 0 and then,
then hours portion of the start time is subtracted
from the hours portion of the end time.

Listing 7. DateDiff() drills down only to the datepart you
specify.
DECLARE @start datetime2 =
 '2016-10-27 11:45:00';
DECLARE @end1 datetime2 =
 '2016-10-27 13:15:00';
DECLARE @end2 datetime2 =
 '2016-10-27 10:15:00';

SELECT DATEDIFF(hh, @start, @end1),
 DATEDIFF(hh, @start, @end2);

Finding new dates and times from old
The DateAdd() function lets you find the date/time
so many days, weeks, months, hours, or whatever
before or after the date/time you already have. The
syntax is shown in Listing 8. The function uses the
same list of dateparts as DateDiff().

Listing 8. Use DateAdd() to add or subtract dateparts from a
date/time.
Result = DATEADD(DatePart, Number, Start)

Since DateAdd() is like a supercharged version
of VFP’s GoMonth() function, let’s start with an
example that shows the similarity. To find the date
one month after a specified date, you use code like
Listing 9. Figure 4 shows results.

Listing 9. DateAdd() is like VFP’s GoMonth() function, except
that it can handle much more than months.
SELECT tDateTime2, DATEADD(mm, 1, tDateTime2)
 FROM #dtTesting

Of course, what makes DateAdd() powerful is
its ability to calculate based on any datepart. So,
for example, to find the date six quarters before a
specified date, you use code like Listing 10.

Listing 10. To find an earlier date, pass a negative number as
the second parameter to DateAdd().
SELECT tDateTime2, DATEADD(q, -6, tDateTime2)
 FROM #dtTesting

DateAdd() returns a value of the same type as
Start, unless you pass a string in for the start date,
in which case, the function returns a datetime.

DateAdd() is also useful for creating date/
times; I’ll cover that in my next article.

There’s one very specific function that answers
a common question. The EOMonth() function
returns the last day of the month of the date you
pass it. It also accepts an optional second param-
eter, which lets you specify a number of months, so
that you can find the last day of the month so many
months before or after the date you specify. The
query in Listing 11 finds the last day of the month
for the tDateTime2 field, and then the last day of
the month three months before and three months
after the specified date. Figure 5 shows the result.

Listing 11. The EOMonth() function computes the last day of
the specified date, and even lets you look forward and back-
ward.
SELECT EOMONTH(tDateTime2),
 EOMONTH(tDateTime2, -3),
 EOMONTH(tDateTime2, 3)
 FROM #dttesting

Note that EOMonth() returns a Date, no matter
which date/time type you pass in.

Figure 3. The difference in hours between
datetimes that are the same distance
apart can be different because of the way
DateDiff() works.

Figure 4. When you use month or mm as the datepart,
DateAdd() works just like VFP’s GoMonth().

Figure 5. Use EOMonth() to find the last day of the month.

November 2016 FoxRockX Page 15

Taking Date/Times apart
VFP has a set of functions for parsing dates and
datetimes into their components. For example,
YEAR() returns the year portion of a date or date-
time, while MINUTE() returns the minute portion
of a datetime.

SQL Server also has DAY(), MONTH() and
YEAR() functions that let you extract the specified
portion of a date/time. However, it doesn’t include
functions to extract the hour, minute or second.

Instead, there’s are two generic functions,
DatePart() and DateName, that let you extract any
date part from a date/time value. DatePart() returns
the specified part as an integer, while DateName()
returns it as nVarChar.

The syntax for the two functions is shown in
Listing 12.

Listing 12. The DatePart() function lets you extract any compo-
nent of a date/time.
iResult = DATEPART(datepart, date)
cResult = DATENAME(datepart, date)

For example, to get the hour, minute and sec-
ond components as integers, you can use code like
Listing 13. The results are shown in Figure 6.

Listing 13. Use DatePart() to take dates and times apart.
SELECT DATEPART(hour, tDateTime2) AS iHour,
 DATEPART(minute, tDateTime2)
 AS iMinute,
 DATEPART(second, tDateTime2) AS iSecond
 FROM #dttesting

The only dateparts where the two functions
return different values (that is, values that differ
other than in type) are month and weekday. Listing
14 calls each of the functions for those two date-
parts; Figure 7 shows the result.

Listing 14. DATENAME() returns the name of the specified
part of the date/time. For months and days, it gives it in the
system language, rather than as a number.
SELECT DATEPART(MONTH, tDateTime2) AS iMonth,
 DATENAME(MONTH, tDateTime2) AS cMonth,
 DATEPART(WEEKDAY, tDateTime2) AS iDay,
 DATENAME(WEEKDAY, tDateTime2) AS cDay
 FROM #dttesting

The week and weekday dateparts depend on
SET DATEFIRST, which specifies the first day of
the week (like the VFP SET FDOW command). SET
DATEFIRST accepts a value from 1 (Monday) to 7
(Sunday, which is the default for US English). List-
ing 15 shows how to set Wednesday as the first day
of the week. The @@DATEFIRST function returns
the current setting.

Listing 15. SET DATEFIRST specifies the first day of the week,
which determines how weeks are counted when using the week
and weekday dateparts.
SET DATEFIRST 3

The ISO_WEEK datepart is independent of the
DATEFIRST setting. Each week runs from Monday
to Sunday and is associated with the year in which
the Thursday falls. So, for example, DATEPART(iso_
week, ‘2016-1-2’) returns 53, because January 2,
2016 fell on a Saturday and the Thursday that week
was December 31, 2015, so it’s counted as the last
week of 2015. But DATEPART(iso_week,’2017-1-1’)
returns 1, because it’s a Sunday and the Thursday
of that week is January 5, 2017.

Assembling dates
One of the minor, but really useful, changes in VFP,
was the addition of parameters to the DATE() and
DATETIME() functions in VFP 6. You can pass a
year, month and day to DATE(), or those three plus
hour, minute and second values to DATETIME()
and get back a date or datetime value. The func-
tions provided an elegant date format independent
way to specify date/times.

SQL Server has the same capability, using a set
of functions that vary based on the type you want
to return. There’s one function for each of the date/
time types; Listing 16 shows the syntax for these
functions.

Listing 16.SQL Server has a set of functions that can turn
numbers into date/times.
tDateTime = DATETIMEFROMPARTS(
 iYear, iMonth, iDay,
 iHour, iMinute, iSeconds, iMilliseconds)

tDateTime2 = DATETIME2FROMPARTS(
 iYear, iMonth, iDay,
 iHour, iMinute, iSeconds,
 iFractions, iPrecision)

tDateTimeOffset = DATETIMEOFFSETFROMPARTS(
 iYear, iMonth, iDay,
 iHour, iMinute, iSeconds, iFractions,
 iHour_offset, iMinute_offset, iPrecision)

tSmallDateTime = SMALLDATETIMEFROMPARTS(
 iYear, iMonth, iDay, ihour, iMinute)

dDate = DATEFROMPARTS(iYear, iMonth, iDay)

tTime = TIMEFROMPARTS(
 iHour, iMinute, iSeconds,
 iFractions, iPrecision)

Figure 6. SQL Server’s DatePart() function
takes dates and times apart.

Figure 7. For months and days of the week, DateName()
is equivalent to the VFP CMonth() and CDOW() functions.

Page 16 FoxRockX November 2016

To start with a simple example, Listing 17
shows how to set a variable to a specified date.

Listing 17. The various xxxFromParts() functions let you create
date/times from their components.
DECLARE @BirthDate Date;
SET @BirthDate = DateFromParts(1958, 9, 28);

The iFractions and iPrecision parameters of
DateTime2FromParts(), TimeFromParts() and
DateTimeOffsetFromParts() work together. The
value you pass for iPrecision determines how
iFractions is interpreted. Specifically, in assembling
the result, the fractional portion of the time is set
to have iPrecision digits. The value you specify for
iFractions become the right-most of those digits.
For example, the query in Listing 18 produces the
result in Figure 8. The final parameter, 4, indicates
there should be 4 decimal places; the iFractions
parameter of 152 says those are the last three digits.
Thus, the decimal part of the time is .0152.

Listing 18. The fractions and precision parameters of the xxx-
FromParts() functions interact to determine the decimal part of
the time.
SELECT DATETIME2FROMPARTS(
 1958, 9, 28,
 9, 37, 14,
 152, 4)

Another way to think of this is that you divide
the iFraction parameter by 1 followed by iPrecision
zeroes to get the fractional part, so in the previ-
ous example, you divide 152 by 10000, resulting in
.0152.

DateTimeOffsetFromParts() has two param-
eters to specify the offset; you can indicate both
a number of hours and a number of minutes. For
example, to specify a datetime with an offset for US

Eastern time, you pass -5 for offset hours and 0 for
offset minutes, as in the first example in Listing 19.
The second example shows how to specify the off-
set for Newfoundland, which is 3.5 hours behind
UTC.

Listing 19. To build a DateTimeOffset value, you specify the
offset in hours and minutes.
SELECT DATETIMEOFFSETFROMPARTS(
 1958, 9, 28,
 9, 37, 14, 152,
 -5, 0, 4)

SELECT DATETIMEOFFSETFROMPARTS(
 1958, 9, 28,
 9, 37, 14, 152,
 -3, -30, 4)

Putting date/times to work
While there are a few more date/time-related func-
tions, the ones we’ve already covered let us handle
most of the questions that come up around date/
times. In my next article, I’ll show how to use these
functions to answer such questions.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses
and other organizations. Tamar is author or co-author
of a dozen books including the award winning
Hacker’s Guide to Visual FoxPro, Microsoft Office
Automation with Visual FoxPro and Taming Visual
FoxPro’s SQL. Her latest collaboration is VFPX: Open
Source Treasure for the VFP Developer, available at
www.foxrockx.com. Her other books are available
from Hentzenwerke Publishing (www.hentzenwerke.
com). Tamar was a Microsoft Support Most Valuable
Professional from the program's inception in 1993
until 2011. She is one of the organizers of the annual
Southwest Fox conference. In 2007, Tamar received
the Visual FoxPro Community Lifetime Achievement
Award. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com.

DOWNLOAD
Subscribers can download FR201611_code.zip in the SourceCode sub directory of the document
portal. It contains the following files:
tamargranor201611_code.zip
Source code for the article “Working with dates and times in SQL Server”
from Tamar E. Granor, Ph.D.
doughennig201611_code.zip
Source code for the article “A Generic About Dialog” from Doug Hennig

doughennig201611_code.zip
Source code for the article “Processing Whole Words” from Doug Hennig

ericselje201611_code.zip
Source code for the article “FoxUnit in Depth” from Eric Selje

Figure 8. This datetime was specified with152 for iFraction and
4 for iPrecision, resulting in .0152 for the decimal portion.

